Communications System Toolbox™
Getting Started Guide

R2012a

1LAB
IMULINK"

,._l MathWorks'

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Communications System Toolbox™ Getting Started Guide
© COPYRIGHT 2011-2012 by MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

April 2011 First printing New for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction

Product Description 1-2
Key Features, 1-2
System Setupovii e 1-3
Installation i i 1-3
Required Products 14
Expected Background, 14
Configure the Simulink Environment for Communications
Modelso e 1-4
ProductDemos i, 1-6
Demos in the Help Browser 1-6
DemosontheWeb i .. 1-6
Demos on MATLAB Central 1-7
Accessing the Block Libraries 1-8

System Simulation

2

Compute BER for a QAM System with AWGN and Phase

Noise Using Simulink 2-2
Section OVErVIEWttt ittt 2-2
Opening the Model 2-2
Overview of the Model i, 2-3
Quadrature Amplitude Modulation 2-4
Run a Simulation 2-5
Display the Error Rate 2-6
Set Block Parametersccuiiii.. 2-7
Display a Phase Noise Plot 2-8
More Demosciiiiiii e 2-10

iii

iv

Contents

Compute BER for a QAM System with AWGN Using

MATLAB e e 2-11
Section OVEIVIEWttt ittt 2-11
Modulate a Random Signal 2-11
Plot Signal Constellations 2-19
Pulse Shaping Using a Raised Cosine Filter 2-24
Use a Convolutional Code 2-29

3

Create System Objectscciiiii.... 3-2
Create a System Object 3-2
Define a New System Object 3-2
Change a System Object Property 3-3
Runa System Objectciiiiinnn.. 3-3
Display Available System Objects 3-3

Set Up System Objects, 3-4
Create a New System Object 3-4
Retrieve System Object Property Values 3-4
Set System Object Property Values 3-4

Process Data using System Objects 3-6
What are System Object Methods? 3-6
The Step Method, 3-6
Common Methods i, 3-6
Advantages of Using Methods 3-8

What are System Object Locking and Property

Tunability? 3-9
Understand System Object Modes 3-9
Change Properties While Running System Objects 3-10

Change System Object Input Complexity or Dimensions .. 3-10

Find Help and Demos for System Objects 3-11

Index

vi Contents

Introduction

¢ “Product Description” on page 1-2
® “System Setup” on page 1-3
¢ “Product Demos” on page 1-6

e “Accessing the Block Libraries” on page 1-8

Product Description

Design and simulate the physical layer of communication systems

Communications System Toolbox™ provides algorithms and tools for

the design, simulation, and analysis of communications systems. These
capabilities are provided as MATLAB® functions, MATLAB System
objects, and Simulink® blocks. The system toolbox includes algorithms

for source coding, channel coding, interleaving, modulation, equalization,
synchronization, and channel modeling. Tools are provided for bit error rate
analysis, generating eye and constellation diagrams, and visualizing channel
characteristics. The system toolbox also provides adaptive algorithms that
let you model dynamic communications systems that use OFDM, OFDMA,
and MIMO techniques. Algorithms support fixed-point data arithmetic and
C or HDL code generation.

Key Features
® Algorithms available as MATLAB functions, MATLAB System objects,
and Simulink blocks

® Algorithms for designing the physical layer of communications systems,
including source coding, channel coding, interleaving, modulation, channel
models, equalization, and synchronization

e Visualization tools, including eye diagrams, constellations, and channel
scattering functions

e Graphical tool for comparing the bit error rate of a system with analytical
results

¢ Channel models, including AWGN, Multipath Rayleigh Fading, Rician
Fading, COST 207, GSM/EDGE, HF ionospheric, and MIMO

® Interactive tool for visualizing time-varying communications channels

¢ Basic RF impairments, including nonlinearity, phase noise, thermal noise,
and phase and frequency offsets

® Support for fixed-point modeling and C and HDL code generation

System Setup

System Setup

In this section...

“Installation” on page 1-3
“Required Products” on page 1-4
“Expected Background” on page 1-4

“Configure the Simulink Environment for Communications Models” on
page 1-4

Installation
Before you begin working, you must install the product on your computer.

Installing the Communications System Toolbox Software

The Communications System Toolbox software follows the same installation
procedure as the MATLAB toolboxes. See the MATLAB installation
documentation for instructions.

Installing Online Documentation
Installing the documentation is part of the installation process:

e Installation from a DVD — Start the MathWorks® installer. When
prompted, select the Product check boxes for the products you want to
install. The documentation is installed along with the products.

¢ Installation from a Web download — If you update the Communications
System Toolbox software using a Web download and you want to view
the documentation with the MATLAB Help browser, you must install the
documentation on your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

../../../base/install/install_product_page.html
../../../base/install/install_product_page.html

1 Introduction

Required Products

The Communications System Toolbox product is part of a

family of MathWorks products. You need to install several

products to use this product. For more information about

the required products, see the MathWorks website, at
http://www.mathworks.com/products/communications/requirements.html.

Expected Background

This documentation assumes that you already have background knowledge in
the subject of digital communications. If you do not yet have this background,
then you can acquire it using a standard communications text or the books
listed in the Selected Bibliography subsections that appear in many topics.

The discussion and examples in this chapter are aimed at new users.
Continue reading this chapter and try out the examples. Then read the
subsequent chapters that address specific areas of interest to you. As you
learn which block, function, and System object you want to use, refer to the
online reference pages for more information.

Configure the Simulink Environment for
Communications Models

Using commstartup.m

The Communications System Toolbox product provides a file, commstartup.m.
This file changes the default Simulink model settings to values more
appropriate for the simulation of communication systems. The changes apply
to new models that you create later in the MATLAB® session, but not to
previously created models.

Note The DSP System Toolbox™ application includes a similar dspstartup
script, which assigns different model settings. For modeling communication
systems, you should use commstartup alone.

1-4

http://www.mathworks.com/products/communications/requirements.html

System Setup

To install the communications-related model settings each time you start
MATLAB, invoke commstartup from your startup.m file. The settings in
commstartup cause models to:

e Use the variable-step discrete solver in single-tasking mode

e Use starting and ending times of 0 and Inf, respectively

® Avoid producing a warning or error message for inherited sample times
in source blocks

® Set the Simulink Boolean logic signals parameter to Off

® Avoid saving output or time information to the workspace

® Produce an error upon detecting an algebraic loop

¢ Inline parameters if you use the Model Reference feature of Simulink

If your communications model does not work well with these default settings,
you can change each of the individual settings as the model requires.

1-5

1 Introduction

Product Demos

In this section...

“Demos in the Help Browser” on page 1-6
“Demos on the Web” on page 1-6
“Demos on MATLAB Central” on page 1-7

Demos in the Help Browser

You can find interactive Communications System Toolbox demos in the
MATLAB Help browser. This example shows you how to locate and open
demos:

1 To open the Help browser, type doc at the MATLAB command line.

2 Expand the Communications System Toolbox node in the Help browser,
then the Demos node.

There are two entries under the Communications System Toolbox Demos
node:

e MATLAB Demos — Expand this entry to see a categorical list of
Communications System Toolbox demos that you can run in MATLAB.

¢ Simulink Demos — Expand this entry to see a categorical list of
block-based Communications System Toolbox demos that you can run
in Simulink.

You can find more demos for the Simulink software by typing demo at the
MATLAB command line.

Demos on the Web

The MathWorks Web site contains demos that show you how to use
Communications System Toolbox software. You can find these demos at
http://www.mathworks.com/communications-systems/demos.html.

You can view these demos without having MATLAB or the DSP System
Toolbox product installed on your system.

1-6

http://www.mathworks.com/communications-systems/demos.html

Product Demos

Demos on MATLAB Central

MATLAB Central contains files, including demos, contributed by users and
developers of Communications System Toolbox, MATLAB, Simulink, and other
products. Contributors submit their files to one of a list of categories. You can
browse these categories to find submissions that pertain to Communications
System Toolbox software or a specific problem that you want to solve.
MATLAB Central is located at http://www.mathworks.com/matlabcentral/.

http://www.mathworks.com/matlabcentral/

Introduction

Accessing the Block Libraries

To view the block libraries for the products you have installed, type simulink
at the MATLAB prompt (or click the Simulink button % on the MATLAB
toolbar). The Simulink Library Browser appears.

B Simulink Library Brewser [o =]
Fle it Voew Help

D & » Enersearchiem - 84§ 3
Litwamiis Libwary. Communications System Toolbox | Search Resulls: (none) | Mast Fraguantly Used Blocks

BT Communicaions Sysem Toahox 3
"

Channels Comm Filters Comm Sinks

comm sowces [] Eqtene

MIMO

Comm Filtars.
Comm Sanks

*-Comm Sources

Esror Detection

and Cedrection
Equahizers

#-Emor Detection and Correction

Interlemving WMadulation

A SDR Hardware
Impairments

' chet -
Source Coding t! :ym.l' oz atic-

F Intereaving
MIMO
+ Modulation

Sequence
Operstions
RF Impairmants
SOR Hardware
Sequence Opsrations
Source Coding
#- Synchranization
Utibty Blocks
=W Computer Vision System Toolt<x
W Cortrol System Toclbox
+- W DSP System Toolbox
W Data Acquisitson Toolbax
+- W EDA Simulator Link
= B Embedded Coder
=W Fuzzy Logic Toslbex
=W Gauges Blockset
W Image Acquisition Toolbax
W Instrument Contral Toclbox
¥ Model Predictive Control Toolbox
W Mewral Network Toolbox
W OPC Toolbox
W PESL_Intenm
+- ¥ Physical Mcdeling Development
Showing: Communications System Toolbax

[b= B (3] B

Wity Elocks

Simulink Library Browser

The left pane displays the installed products, each of which has its own library
of blocks. To open a library, click the + sign next to the product name in the
left pane. This displays the contents of the library in the right pane.

You can find the blocks you need to build communications system models in
the Communications System Toolbox, DSP System Toolbox, and Simulink
libraries.

Alternatively, you can access the main Communications System Toolbox block
library by entering commlib at the MATLAB command line.

System Simulation

¢ “Compute BER for a QAM System with AWGN and Phase Noise Using
Simulink” on page 2-2

¢ “Compute BER for a QAM System with AWGN Using MATLAB” on page
2-11

2 System Simulation

2-2

Compute BER for a QAM System with AWGN and Phase
Noise Using Simulink

In this section...

“Section Overview” on page 2-2

“Opening the Model” on page 2-2

“Overview of the Model” on page 2-3
“Quadrature Amplitude Modulation” on page 2-4
“Run a Simulation” on page 2-5

“Display the Error Rate” on page 2-6

“Set Block Parameters” on page 2-7

“Display a Phase Noise Plot” on page 2-8

“More Demos” on page 2-10

Section Overview

This section describes a demo model of a communications system that comes

with Communications System Toolbox software. The model displays a scatter
plot of a signal with added noise. The purpose of this section is to familiarize
you with the basics of Simulink models and how they function.

The section takes you through some key elements of working with this model.

Opening the Model

To open the model, first start MATLAB. In the MATLAB Command Window,
enter commphasenoise at the prompt. This opens the model in a new window,
as shown in the following figure.

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

]commphasenoise 10l =|

File Edit WYiew Simulation Format Tools Help

[Phase Noise Effects in 256-QAM |

HIE —
LI WML Error Rate
= ES Phase Caloulation [Total Errors
Randem B Rectangular o T oAWEH T el ; | Rectangular el R
Integer 2AM Maise QAM Total Symbaols

Double-clidk on thiz blodk to see a BER plot o | ee
showing the performance of 256 QAR bl i
with various levels of phase noise. |

AWEGHN pluz Phaze Moize

Ready [1o02 |odets v

Overview of the Model

The Simulink model shown in the preceding section, “Opening the Model”
on page 2-2, simulates the effect of phase noise on quadrature amplitude
modulation (QAM) of a signal. The Simulink model is a graphical
representation of a mathematical model of a communication system that
generates a random signal, modulates it using QAM, and adds noise to
simulate a channel. The model also contains components for displaying the
symbol error rate and a scatter plot of the modulated signal.

The blocks and lines in the Simulink model describe mathematical
relationships among signals and states:

¢ The Random Integer Generator block, labeled Random Integer, generates a
signal consisting of a sequence of random integers between zero and 255

¢ The Rectangular QAM Modulator Baseband block, to the right of the
Random Integer Generator block, modulates the signal using baseband
256-ary QAM.

¢ The AWGN Channel block models a noisy channel by adding white
Gaussian noise to the modulated signal.

2-3

2 System Simulation

2-4

® The Phase Noise block introduces noise in the angle of its complex input
signal.

¢ The Rectangular QAM Demodulator Baseband block, to the right of the
Phase Noise block, demodulates the signal.

In addition, the following blocks in the model help you interpret the
simulation:

® The Discrete-Time Scatter Plot Scope block, labeled AWGN plus Phase
Noise, displays a scatter plot of the signal with added noise.

® The Error Rate Calculation block counts symbols that differ between the
received signal and the transmitted signal.

® The Display block, at the far right of the model window, displays the
symbol error rate (SER), the total number of errors, and the total number
of symbols processed during the simulation.

All these blocks are included in Communications System Toolbox and
Simulink applications. You can find more detailed information about these
blocks by right-clicking the block and selecting Help from the context menu.

Quadrature Amplitude Modulation

This model simulates quadrature amplitude modulation (QAM), which 1s

a method for converting a digital signal to a complex signal. The model
modulates the signal onto a sequence of complex numbers that lie on a lattice
of points in the complex plane, called the constellation of the signal. The
constellation for baseband 256-ary QAM is shown in the following figure.

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

<} Scatter Plot 10l =|

File Axes Channels Window Help

15

0.5

Quadrature Amplitude
(o]

0.8

T s 1 04 i 05 1 15
In-phase Amplitude

Constellation for 256-ary QAM

Run a Simulation

To run a simulation, select Simulation > Start from the top of the model
window. The simulation stops automatically at the Stop time, which is
specified in the Configuration Parameters dialog box. You can stop the
simulation at any time by selecting Stop from the Simulation menu at the
top of the model window (or, on Microsoft Windows, by clicking the Stop
button on the toolbar).

When you run the model, a new window appears, displaying a scatter plot of
the modulated signal with added noise, as shown in the following figure.

2-5

2 System Simulation

2-6

-} 256-0AM Scatter Plot %

File Axes Channels ‘Window Help

=10l x|

15

0.5

In-phase Amplitude
(o]

0.8

PP P s T G AW \,)& \
R ok e e q:w.w\\. *.”\
P A WP e By ‘ \ \.
Lol G IR R N N N A e Y
PRI I W

+*
* .

*

DI Y 0 1

’.'«‘ 0‘0’*0“\8"‘ “
[2N 2N SR Bt
At * e 40
L IR S IR
PR I W T A
LR L
RN AN N e,

PN AN 2 IR

PRI NS N Y

R A T LSS TR R S
AR AR ¢ S 2 2 W

74
4
4
$
H
§

+

Ll A R oW L

+

*

Tu B T S W s
T aa t O SRS S8
oy, A vy e o,.&*/&"

re
2
N
&\ A R R e e g

Gy o PO NN NN,

L R L

*

*

X3
4

-1 0.5 a 0.s 1
Cuadrature Amplitude

Scatter Plot of Signal Plus Noise

The points in the scatter plot do not lie exactly on the constellation shown in
the figure Constellation for 256-ary QAM on page 2-5 because of the added
noise. The radial pattern of points is due to the addition of phase noise, which
alters the angle of the complex modulated signal.

Display the Error Rate

The Display block displays the number of errors introduced by the channel
noise. When you run the simulation, three small boxes appear in the block,
as shown in the following figure, displaying the vector output from the Error
Rate Calculation block.

0.007701

T4

1.005e+005

SER

Total Ermars

Total Symbols

Error Rate Display

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

The block displays the output as follows:

® The first entry is the symbol error rate (SER).
® The second entry is the total number of errors.

¢ The third entry is the total number of comparisons made. The notation
1e+004 is shorthand for 104

Set Block Parameters

You can control the way a Simulink block functions by setting its parameters.
To view or change a block’s parameters, double-click the block. This opens a
dialog box, sometimes called the block’s mask. For example, the dialog box for
the Phase Noise block is shown in the following figure.

E1Block Parameters: Phase Noise 2=l
—Phase Moise [mask] [link]

Complex bazeband model of receiver phase noize.

The output of thiz black is noise with a spectrum characterized by a 1/f slope. The
level of the spectium iz specified by the noize power contained in a one hertz
bandwidth offset from the carier by a certain frequency.

=
F

FPhase noize level [dBc/Hz):
|68

Frequency offzet [Hz):

J200

Initial seed:

|17

............. g K | Cancel | Help | o

Dialog for the Phase Noise Block

To change the amount of phase noise, click in the Phase noise level
(dBc/Hz) field and enter a new value. Then click OK.

Alternatively, you can enter a variable name, such as phasenoise, in the
field. You can then set a value for that variable in the MATLAB Command
Window, for example by entering phasenoise = -60. Setting parameters in
the Command Window is convenient if you need to run multiple simulations
with different parameter values.

2-7

2 System Simulation

2-8

You can also change the amount of noise in the AWGN Channel block.
Double-click the block to open its dialog box, and change the value in the
Es/No parameter field. This changes the signal to noise ratio, in dB.
Decreasing the value of Es/No increases the noise level.

You can experiment with the model by changing these or other parameters
and then running a simulation. For example,

® Change Phase noise level (dBc/Hz) to -150 in the dialog box for the
Phase Noise block.

¢ Change Es/No to 100 in the dialog for the AWGN Channel block.

This removes nearly all noise from the model. When you now run a
simulation, the scatter plot appears as in the figure Constellation for 256-ary
QAM on page 2-5.

Display a Phase Noise Plot

Double-click the block labeled “Display Figure” at the bottom left of the model
window. This displays a plot showing the results of multiple simulations.

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

-} Figure No. 1 10l =|

File Edit WYiew Insert Tools Window Help

lDzd& hpeea OB O0O@MNN\| AR
Phase Noise Performance of 256-QAM for Frequency Offset of 1000Hz

0w ee——————————
% -85 dBoHz 1
% -85 dBeHz []
% 82 dBoHz
10" L 4 -79dBoHz Y
4% 76 dBoHz [
107
o
(T s =
.
10°
1

20 21 22 23
Eb/Mo

BER Plot at Different Noise Levels

Each curve is a plot of bit error rate as a function of signal to noise ratio for a
fixed amount of phase noise.

You can create plots like this by running multiple simulations with different
values for the Phase noise level (dBc/Hz) and Es/No parameters.

2-9

2 System Simulation

More Demos

You can find Communications System Toolbox demos in the MATLAB Help
browser. For more information, see “Demos in the Help Browser” on page 1-6
software by typing demo at the MATLAB command line.

2-10

Compute BER for a QAM System with AWGN Using MATLAB®

Compute BER for a QAM System with AWGN Using
MATLAB

In this section...

“Section Overview” on page 2-11

“Modulate a Random Signal” on page 2-11

“Plot Signal Constellations” on page 2-19

“Pulse Shaping Using a Raised Cosine Filter” on page 2-24

“Use a Convolutional Code” on page 2-29

Section Overview

Communications System Toolbox software implements a variety of
communications-related tasks. Many of the functions in the toolbox perform
computations associated with a particular component of a communication
system, such as a demodulator or equalizer. Other functions are designed
for visualization or analysis.

While the later chapters of this document discuss various features in more
depth, this section builds an example step-by-step to give you a first look at
the Communications System Toolbox software. This section also shows how
Communications System Toolbox functionalities build upon the computational
and visualization tools in the underlying MATLAB environment.

Modulate a Random Signal
This first example addresses the following problem:

Problem Process a binary data stream using a communication system that
consists of a baseband modulator, channel, and demodulator. Compute the
system’s bit error rate (BER). Also, display the transmitted and received
signals in a scatter plot.

2-11

2 System Simulation

The following table indicates the key tasks in solving the problem, along
with relevant Communications System Toolbox functions. The solution
arbitrarily chooses baseband 16-QAM (quadrature amplitude modulation) as
the modulation scheme and AWGN (additive white Gaussian noise) as the
channel model.

Task Function or Method

Generate a random binary data stream randi

Modulate using 16-QAM modulate method on
modem. gammod object

Add white Gaussian noise awgn

Create a scatter plot scatterplot

Demodulate using 16-QAM modulate method on

modem. gamdemod object

Compute the system’s BER biterr

Solution of Problem

The discussion below describes each step in more detail, introducing MATLAB
code along the way. To view all the code in one editor window, enter the
following in the MATLAB Command Window.

edit commdoc_mod

1. Generate a Random Binary Data Stream. The conventional format
for representing a signal in MATLAB is a vector or matrix. This example uses
the randi function to create a column vector that lists the successive values
of a binary data stream. The length of the binary data stream (that is, the
number of rows in the column vector) is arbitrarily set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

2-12

Compute BER for a QAM System with AWGN Using MATLAB®

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Your plot might look different because the
example uses random numbers. Notice the use of the colon (:) operator in
MATLAB to select a portion of the vector. For more information about this
syntax, see The Colon Operator in the MATLAB documentation set.

%% Setup
Define parameters.

o°

M= 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
n = 3e4; % Number of bits to process

o°

nsamp = 1; Oversampling rate
hMod = comm.RectangularQAMModulator(M); % Create a 16-QAM modulator

%% Signal Source
% Create a binary data stream as a column vector.
X = randi([0 1],n,1); % Random binary data stream

% Plot first 40 bits in a stem plot.
stem(x(1:40), 'filled');

title('Random Bits');

xlabel('Bit Index'); ylabel('Binary Value');

2-13

2 System Simulation

2-14

Figure1 [F=% (o =5
File Edit View Insert Tools Desktop Window Help L]
j_jaé h +\- _\-{fr?@\'h.h&%v @J Dlz‘ EE
Random Bits
1
0.9¢ B
081 B
0.7 B
o 06 B
=
o
Z 0sf |
©
=
m 04r B
0.3r B
0.2r B
01r B
0 88 #— 88 & Lam e 1L e
0 5 10 15 20 25 30 35 40
Bit Index

2. Prepare to Modulate. The modem.qgammod object implements an M-ary
QAM modulator, M being 16 in this example. It is configured to receive
integers between 0 and 15 rather than 4-tuples of bits. Therefore, you must
preprocess the binary data stream x before using the modulate method of the
object. In particular, you arrange each 4-tuple of values from x across a row of
a matrix, using the reshape function in MATLAB, and then apply the bi2de
function to convert each 4-tuple to a corresponding integer. (The . ' characters
after the reshape command form the unconjugated array transpose operator
in MATLAB. For more information about this and the similar ' operator, see
Reshaping a Matrix in the MATLAB documentation set.)

%% Bit-to-Symbol Mapping

% Convert the bits in x into k-bit symbols.
hBitToInt = comm.BitToInteger(k);

xsym = step(hBitToInt,x);

%% Stem Plot of Symbols
% Plot first 10 symbols in a stem plot.

Compute BER for a QAM System with AWGN Using MATLAB®

figure; % Create new figure window.
stem(xsym(1:10));

title('Random Symbols');

xlabel('Symbol Index'); ylabel('Integer Value');

Figure1 e =]

File Edit View Insert Tools Desktop Window Help L]
j_jaé h +_\{fr?@\+h£v @J Dlz‘ E

Random Symbols
14 T T

12t .

10 o] o] k:

Integer Value

1 2 3 4 5 6 7 8 9 10
Symbol Index

3. Modulate Using 16-QAM. Having defined xsym as a column vector
containing integers between 0 and 15, you can use the modulate method of the
modem.gammod object to modulate xsym using the baseband representation.
Recall that M i1s 16, the alphabet size.

%% Modulation
y = modulate(modem.qgammod(M),xsym); % Modulate using 16-QAM.

The result is a complex column vector whose values are in the 16-point
QAM signal constellation. A later step in this example will show what the

constellation looks like.

To learn more about modulation functions, see “Digital Modulation”. Also,
note that the modulate method of the modem.gammod object does not apply

2-15

2 System Simulation

any pulse shaping. To extend this example to use pulse shaping, see “Pulse
Shaping Using a Raised Cosine Filter” on page 2-24. For an example that
uses Gray coding with PSK modulation, see Gray Coded 8-PSK.

4. Add White Gaussian Noise. Applying the awgn function to the
modulated signal adds white Gaussian noise to it. The ratio of bit energy to
noise power spectral density, E,/N,, is arbitrarily set at 10 dB.

The expression to convert this value to the corresponding signal-to-noise ratio
(SNR) involves k, the number of bits per symbol (which is 4 for 16-QAM), and
nsamp, the oversampling factor (which is 1 in this example). The factor k is
used to convert E, /N, to an equivalent E /N,, which is the ratio of symbol
energy to noise power spectral density. The factor nsamp is used to convert
E/N, in the symbol rate bandwidth to an SNR in the sampling bandwidth.

Note The definitions of ytx and yrx and the nsamp term in the definition of
snr are not significant in this example so far, but will make it easier to extend
the example later to use pulse shaping.

%% Transmitted Signal
ytx = y;

%% Channel

% Send signal over an AWGN channel.

EbNo = 10; % In dB

snr = EbNo + 10*1og10(k) - 10*1log10(nsamp);

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',
'SNR',snr);

hChan.SignalPower = (ytx' * ytx)/ length(ytx);

ynoisy = step(hChan,ytx);

%% Received Signal
yrx = ynoisy;

To learn more about awgn and other channel functions, see “Channel Modeling
and RF Impairments”.

2-16

Compute BER for a QAM System with AWGN Using MATLAB®

5. Create a Scatter Plot. Applying the scatterplot function to the
transmitted and received signals shows what the signal constellation looks
like and how the noise distorts the signal. In the plot, the horizontal axis is
the in-phase component of the signal and the vertical axis is the quadrature
component. The code below also uses the title, legend, and axis functions
in MATLAB to customize the plot.

%% Scatter Plot

% Create scatter plot of noisy signal and transmitted
% signal on the same axes.

h = scatterplot(yrx(1:nsamp*5e3),nsamp,0,'qg."');

hold on;

scatterplot(ytx(1:5e3),1,0, 'k*',h);

title('Received Signal');

legend('Received Signal', 'Signal Constellation');
axis([-5 5 -5 5]); % Set axis ranges.

hold off;
n Figure 1: Scatter Plot EI
File Edit View Insert Tools Desktop Window Help L]

NEEL KRAATDEL- 20D

Received Signal

+ Received Signal

CQuadrature
b A o -

[

In-Phase

To learn more about scatterplot, see “Scatter Plots”.

2-17

2 System Simulation

2-18

6. Demodulate Using 16-QAM. Applying the demodulate method of the
modem.gamdemod object to the received signal demodulates it. The result is a
column vector containing integers between 0 and 15.

%% Demodulation
% Demodulate signal using 16-QAM.
zsym = demodulate(modem.qgamdemod(M),yrx);

7. Convert the Integer-Valued Signal to a Binary Signal. The previous
step produced zsym, a vector of integers. To obtain an equivalent binary signal,
use the de2bi function to convert each integer to a corresponding binary
4-tuple along a row of a matrix. Then use the reshape function to arrange all
the bits in a single column vector rather than a four-column matrix.

%% Symbol-to-Bit Mapping

% Undo the bit-to-symbol mapping performed earlier.
hIntToBit = comm.IntegerToBit(k);

z = step(hIntToBit,zsym);

8. Compute the System’s BER. Applying the biterr function to the original
binary vector and to the binary vector from the demodulation step above
yields the number of bit errors and the bit error rate.

%% BER Computation

% Compare x and z to obtain the number of errors and
% the bit error rate.

hErrorCalc = comm.ErrorRate;

berVec = step(hErrorCalc,x,z);

bit_error_rate = berVec(1)

number_of_errors = berVec(2)

The statistics appear in the MATLAB Command Window. Your results might
vary because the example uses random numbers.

number_of_errors =

71

bit_error_rate =

Compute BER for a QAM System with AWGN Using MATLAB®

0.0024

Plot Signal Constellations

The example in the previous section created a scatter plot from the modulated
signal. Although the plot showed the points in the QAM constellation, the plot
did not indicate which integers between 0 and 15 the modulator mapped to a
given constellation point. This section addresses the following problem:

Problem Plot a 16-QAM signal constellation with annotations that indicate
the mapping from integers to constellation points.

The solution uses the scatterplot function to create the plot and the text
function in MATLAB to create the annotations.

Solution of Problem

To view a completed MATLAB file for this example, enter edit
commdoc_const in the MATLAB Command Window.

1. Find All Points in the 16-QAM Signal Constellation. The
Constellation property of the modem.gammod object contains all points in the
16-QAM signal constellation.

M = 16; % Number of points in constellation
h=modem.qammod (M) ; % Modulator object
mapping=h.SymbolMapping; % Symbol mapping vector

pt = h.Constellation; % Vector of all points in constellation

2. Plot the Signal Constellation. The scatterplot function plots the
points in pt.

% Plot the constellation.
scatterplot(pt);

2-19

2 System Simulation

Figure 1: Scatter Plot EI@

File Edit View Inset Tools Desktop Window Help L]

A8de [k[RROOEL- S| 0E ad

Scatter plot

3F+ * +* + -

Quadrature
f==]

In-Phase

3. Annotate the Plot to Indicate the Mapping. To annotate the plot to
show the relationship between mapping and pt, use the text function to place
a number in the plot beside each constellation point. The coordinates of the
annotation are near the real and imaginary parts of the constellation point,
but slightly offset to avoid overlap. The text of the annotation comes from
the binary representation of mapping. (The dec2bin function in MATLAB
produces a string of digit characters, while the de2bi function used in the last
section produces a vector of numbers.)

% Include text annotations that number the points.

text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

2-20

Compute BER for a QAM System with AWGN Using MATLAB®

Figurel EI@
File Edit View Insert Tools Desktop Window Help L]
Ddde | | AROBDEL- |2 |0EH | aD

4

3r 0000 0100 1000 1100

2L

1r 0001 0101 1001 1101

ok

Ar 0010 0110 1010 1110

2t

-3r 0011 0111 1011 1111

4 I I I I I I I)

4 3 2 1 0 1 2 3 4

Binary-Coded 16-QAM Signal Constellation

Examine the Plot

In the plot above, notice that 0001 and 0010 correspond to adjacent
constellation points on the left side of the diagram. Because these

binary representations differ by two bits, the adjacency indicates that the
modem. gammod object did not use a Gray-coded signal constellation. (That is, if
it were a Gray-coded signal constellation, then the annotations for each pair
of adjacent points would differ by one bit.)

By contrast, the constellation below is one example of a Gray-coded 16-QAM
signal constellation.

2-21

2 System Simulation

Figure 1: Scatter Plot EI@
File Edit View Inset Tools Desktop Window Help L]
j_jaé h +_\{fr?@\+h£v@J Dlz‘ E
Scatter plot
4 .
3r +0000 +0100 +1100 +1000
2L J
1r +0001 +0101 +1101 +1001
5
£]
o
=3
(&}
At «0011 0111 <1111 +1011
21]
-3t +0010 «0110 1110 +1010
4 L
4 -2 0 2 4
In-Phase

Gray-Coded 16-QAM Signal Constellation

The only difference, compared to the previous example, is that you configure
modem. gammod object to use a Gray-coded constellation.

%% Modified Plot, With Gray Coding

M = 16; % Number of points in constellation

h = modem.qgammod('M',M, 'SymbolOrder', 'Gray'); % Modulator object
mapping = h.SymbolMapping; % Symbol mapping vector

pt = h.Constellation; % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(mapping));

axis([-4 4 -4 4]); % Change axis so all labels fit in plot.%% Modified Plot
M = 16; % Number of points in constellation

h = modem.qgammod('M',M, 'SymbolOrder', 'Gray'); % Modulator object

mapping = h.SymbolMapping; % Symbol mapping vector

2-22

Compute BER for a QAM System with AWGN Using MATLAB®

pt = h.Constellation; % Vector of all points in constellation
scatterplot(pt); % Plot the constellation.
% Include text annotations that number the points.

text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

2-23

2 System Simulation

2-24

Pulse Shaping Using a Raised Cosine Filter

This section further extends the example by addressing the following problem:

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can
use the rcosflt function to perform both tasks in one command; see “Design
Raised Cosine Filters Using MATLAB” or the rcosdemo demonstration for
more details.

Solution of Problem

This solution modifies the code from commdoc_gray.m. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_gray

To view a completed MATLAB file for this example, enter edit commdoc_rrc
in the MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example,
replace the definition of the oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition

% Define filter-related parameters.

filtorder = 40; % Filter order

delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

Compute BER for a QAM System with AWGN Using MATLAB®

2. Create a Square Root Raised Cosine Filter. To design the filter and
plot its impulse response, insert the following commands after the commands
you added in the previous step.

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp, 'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);

Figure 2 e =]

File Edit View Insert Tools Desktop Window Help L]
j_jtﬂé h +_\{fr?@\+h£v @J Dlz‘ E

Impulse Response
0.6 T T

0.5F B

0.4r B

03k L L _

Amplitude

0.2r B

=

01 4
P LTy -?T? [[?T?- LT,
bR " T 2T Y Y 1TTe %% °*

_0_1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

n (samples)

3. Filter the Modulated Signal. To filter the modulated signal, replace the
Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp, 'filter',rrcfilter);

% Create eye diagram for part of filtered signal.

2-25

2 System Simulation

2-26

eyediagram(ytx(1:2000),nsamp*2);

The rcosflt command internally upsamples the modulated signal, y, by a
factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.

Figure 1: Eye Diagram EI@

File Edit View Insert Tools Desktop Window Help L]

Ddde | M RRO9EL- |08 ad

Eye Diagram for In-Phase Signal

Amplitude

Amplitude

To learn more about eyediagram, see “Eye Diagram Analysis”.

Compute BER for a QAM System with AWGN Using MATLAB®

4, Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal

% Filter received signal using square root raised cosine filter.
yrx = rcosflt(ynoisy,1,nsamp, 'Fs/filter',rrcfilter);

yrx = downsample(yrx,nsamp); % Downsample.

yrx yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it is
important to compare two vectors that have the same size.

5. Adjust the Scatter Plot. For variety in this example, make the scatter
plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot

% Create scatter plot of received signal before and

% after filtering.

h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'qg.");
hold on;

scatterplot(yrx(1:5e3),1,0, 'kx',h);

title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');

axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)

when plotting. This is because the filtering operation changes the signal’s
power.

2-27

System Simulation

J\ Figure 5: Scatter Plok = |

File Edit Wiew Insert Tools Desktop Window Help

Received Signal, Befare and After Filtering

Befare Filtering
After Filtering

CQuadrature

In-Phase

2-28

Compute BER for a QAM System with AWGN Using MATLAB®

Use a Convolutional Code

This section further extends the example by addressing the following problem:

Problem Modify the previous example so that it includes convolutional
coding and decoding, given the constraint lengths and generator polynomials
of the convolutional code.

The solution uses the convenc and vitdec functions to perform encoding
and decoding, respectively. It also uses the poly2trellis function to define
a trellis that represents a convolutional encoder. To learn more about these
functions, see “Convolutional Codes”.

Enter commConvolutionalCodingPunctures at the MATLAB command line
to a access a Punctured Convolutional Coding example.

Solution of Problem

This solution modifies the code from “Pulse Shaping Using a Raised Cosine
Filter” on page 2-24. To view the original code in an editor window, enter the
following command in the MATLAB Command Window.

edit commdoc_rrc

To view a completed MATLAB file for this example, enter edit commdoc_code
in the MATLAB Command Window.

1. Increase the Number of Symbols. Convolutional coding at this value
of EbNo reduces the BER markedly. As a result, accumulating enough errors
to compute a reliable BER requires you to process more symbols. In the Setup
section, replace the definition of the number of bits, n, with the following.

n = 5e5; % Number of bits to process

Note The larger number of bits in this example causes it to take a noticeably
longer time to run compared to the examples in previous sections.

2-29

2 System Simulation

2-30

2. Encode the Binary Data. To encode the binary data before mapping it to
integers for modulation, insert the following after the Signal Source section
of the example and before the Bit-to-Symbol Mapping section.

%% Encoder

% Define a convolutional coding trellis and use it

% to encode the binary data.

t = poly2trellis([5 4],[23 35 0; 0 5 13]); % Trellis
code = convenc(x,t); % Encode.

coderate = 2/3;

The poly2trellis command defines the trellis that represents the
convolutional code that convenc uses for encoding the binary vector, x. The
two input arguments in the poly2trellis command indicate the constraint
length and generator polynomials, respectively, of the code. A diagram
showing this encoder is in “Design a Rate-2/3 Feedforward Encoder Using
MATLAB".

3. Apply the Bit-to-Symbol Mapping to the Encoded Signal. The
bit-to-symbol mapping must apply to the encoded signal, code, not the original
uncoded data. Replace the first definition of xsym (within the Bit-to-Symbol
Mapping section) with the following.

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(code,k,length(code)/k)."', 'left-msb');

Recall that k is 4, the number of bits per symbol in 16-QAM.

4. Account for Code Rate When Defining SNR. Converting from E,/N, to
the signal-to-noise ratio requires you to account for the number of information
bits per symbol. Previously, each symbol corresponded to k bits. Now, each
symbol corresponds to k*coderate information bits. More concretely, three
symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits, so the ratio of symbols to information bits is 8/3

= 4*(2/3) = k*coderate

Therefore, change the definition of snr (within the Channel section) to the
following.

snr = EbNo + 10*log10(k*coderate)-10*1og10(nsamp);

Compute BER for a QAM System with AWGN Using MATLAB®

5. Decode the Convolutional Code. To decode the convolutional
code before computing the error rate, insert the following after the entire
Symbol-to-Bit Mapping section and just before the BER Computation
section.

%% Decoder

% Decode the convolutional code.

tb = 16; % Traceback length for decoding

z = vitdec(z,t,tb,'cont','hard'); % Decode.

The syntax for the vitdec function instructs it to use hard decisions. The
‘cont' argument instructs it to use a mode designed for maintaining
continuity when you invoke the function repeatedly (as in a loop). Although
this example does not use a loop, the 'cont' mode is used for the purpose of
illustrating how to compensate for the delay in this decoding operation. The
delay is discussed further in “More About Delays” on page 2-32.

6. Account for Delay When Computing BER. The continuous operation
mode of the Viterbi decoder incurs a delay whose duration in bits equals the
traceback length, tb, times the number of input streams to the encoder. For
this rate 2/3 code, the encoder has two input streams, so the delay is 2*tb bits.

As a result, the first 2*tb bits in the decoded vector, z, are just zeros. When
computing the bit error rate, you should ignore the first 2*tb bits in z and the
last 2*tb bits in the original vector, x. If you do not compensate for the delay,
then the BER computation is meaningless because it compares two vectors
that do not truly correspond to each other.

Therefore, replace the BER Computation section with the following.

%% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate. Take the decoding delay into account.

decdelay = 2*tb; % Decoder delay, in bits

[number_of_errors,bit_error_rate] =
biterr(x(1:end-decdelay),z(decdelay+1:end))

2-31

2 System Simulation

2-32

More About Delays

The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends

on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find
out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

® The vitdec reference page
¢ “Delays of Convolutional Interleavers”

¢ “Fading Channels”

System Objects

® “Create System Objects” on page 3-2

e “Set Up System Objects” on page 3-4

® “Process Data using System Objects” on page 3-6

® “What are System Object Locking and Property Tunability?” on page 3-9
¢ “Find Help and Demos for System Objects” on page 3-11

3 System Obijects

Create System Obijects

In this section...

“Create a System Object” on page 3-2

“Define a New System Object” on page 3-2
“Change a System Object Property” on page 3-3
“Run a System Object” on page 3-3

“Display Available System Objects” on page 3-3

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets.

Note System objects do not support sparse matrices.

Create a System Object

To use System objects, you must first create an object. For example,

Define a New System Object

You can define a System object to implement your algorithm. For information
and examples, see .

Create System Obijects

Change a System Object Property

In general, you should set the object properties before you use the step
method to run data through the object. To change the value of a property,
use this format,

Run a System Obiject

To execute a system object, use the step method.

Display Available System Obijects

To see a list of all the System objects for a particular package, type . To
display help for specific objects, properties, or methods, see “Find Help and
Demos for System Objects” on page 3-11 .

3-3

3 System Obijects

Set Up System Obijects

In this section...

“Create a New System Object” on page 3-4
“Retrieve System Object Property Values” on page 3-4

“Set System Object Property Values” on page 3-4

Create a New System Object

You must create a System object before using it. You can create the object at
the MATLAB command line or within a program file. Your command-line code
and programs can pass MATLAB variables into and out of System objects.

For general information about working with MATLAB objects, see
Object-Oriented Programming in the MATLAB user documentation.

Retrieve System Object Property Values

System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a Name-Value pair. You can display the list of
relevant property names and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property

1s not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handle>.<Name>,

Example

Set System Object Property Values

You set the property values of a System object to model the desired algorithm.

Set Up System Objects

Note When you use Name-Value pair syntax, the object sets property values
in the order you list them. If you specify a dependent property value before its
parent property, an error or warning may occur.

Set Properties for a New System Object

To set a property when you first create the object, use Name-Value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

where

® H1 is the handle to the object

® CoefficientsSource is the property name.

Set Properties for an Existing System Object

To set a property after you have created an object, use either of the following
syntaxes:

or

Use Value-Only Inputs

Some object properties have no useful default values or must be specified
every time you create an object. For these properties, you can specify only
the value without specifying the corresponding property name. If you use
value-only inputs, those inputs must be in a specific order, which is the
same as the order in which the properties are displayed. Refer to the object
reference page for details. For example,

3-5

3 System Obijects

Process Data using System Obijects

In this section...
“What are System Object Methods?” on page 3-6
“The Step Method” on page 3-6

“Common Methods” on page 3-6

“Advantages of Using Methods” on page 3-8

What are System Object Methods?

After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <method>(<handle>), such as step(H).

The Step Method

The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 3-6.

Common Methods

All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

Process Data using System Obijects

Method

Description

step

Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release

Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. See “Understand System Object Modes”
on page 3-9.

clone

Creates another object with the same property values

isLocked

Returns a logical value indicating whether the object
1s locked. See “Understand System Object Modes” on
page 3-9.

reset

Resets the internal states of the object to the initial
values for that object

isDone

Applies to source objects only. Returns a logical value
indicating whether the step method has reached

the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

info

Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

getNumInputs

Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

3-7

3 System Obijects

3-8

Method Description

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

getDiscreteState | Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method

on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

Advantages of Using Methods

System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

What are System Object Locking and Property Tunability?

What are System Object Locking and Property Tunability?

In this section...

“Understand System Object Modes” on page 3-9
“Change Properties While Running System Objects” on page 3-10
“Change System Object Input Complexity or Dimensions” on page 3-10

Understand System Object Modes

System objects are in one of two modes: unlocked or locked. After you create
an object and until it starts processing data, that object is in unlocked mode.
You can change any of its properties as desired.

The object initializes and locks when it begins processing data. The typical
way in which an object becomes locked is when the step method is called on
that object. To determine if an object is locked, use the isLocked method. To
unlock an object, use the release method. When the object is locked, you
cannot change any of the following:

e Number of inputs or outputs

® Data type

* Dimensions of inputs or tunable properties, except for System objects that
support variable-size data, where the input size can vary. See “What Is
Variable-Size Data?” for more information.

® Value of any nontunable property
Several System objects do not allow changing the complexity of inputs from
real to complex. You can, however, change the input complexity from complex

to real without unlocking the object.

These restrictions allow the object to maintain states and allocate memory
appropriately.

3-9

3 System Obijects

3-10

Change Properties While Running System Objects

When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use a command of this form:where

For information on locked and unlocked modes, see “Understand System
Object Modes” on page 3-9.

Change System Object Input Complexity or
Dimensions

During simulations you can change an input’s complexity from complex to
real, but not from real to complex. You cannot change any input complexity
during code generation.

For objects that do not support variable-size input, if you change the input
dimensions while the object is in locked mode, the object produces a warning
and unlocks. The object then reinitializes the next time you call the step
method. See the object’s reference page for more information. You can change
the value of a tunable property and the input size without a warning or error
being produced. For all other changes at runtime, an error occurs.

Find Help and Demos for System Objects

Find Help and Demos for System Obijects

Refer to the following resources for more information about System objects.

To view demos, go to the Help contents for the associated product.

3-11

3 System Obijects

3-12

block libraries 1-8
block masks 2-7
block parameters 2-7

C

clone method 3-7
constellation 2-4
constellations

binary annotations 2-19

Gray-coded

square QAM 2-21

convolutional coding

adding to system 2-29

D

demos
Help browser 1-6
MATLAB® Central 1-7
Web 1-6
digital modulation
step-by-step example 2-11
documentation
installing 1-3

error rate
displaying 2-6
error-control coding
adding to system 2-29

G

getDiscreteState method 3-8
getNumInputs method 3-7
getNumOutputs method 3-8

info method 3-7

installation
Communications System Toolbox 1-3
documentation 1-3

isDone method 3-7

isLocked method 3-7

L

Library Browser 1-8
locked vs. unlocked mode 3-9

M

MATLAB® Central
communications demos 1-7
modulation
digital
step-by-step example 2-11

P

property values 3-4
pulse shaping
sample code 2-24

Q

quadrature amplitude modulation (QAM) 2-4

raised cosine filters
sample code 2-24
release method 3-7
reset method 3-7
running simulations 2-5

Index-1

Index

S

signal constellations
binary annotations 2-19
Gray-coded
square QAM 2-21
simulations
running 2-5
Simulink libraries 1-8
Simulink Library Browser 1-8
step method 3-7
streaming data
using System objects 3-8
System object
clone method 3-7
creating 3-4
description 3-2
getDiscreteState method 3-8
getNumlInputs method 3-7
getNumOutputs method 3-8
info method 3-7
isDone method 3-7
isLocked 3-7

Index-2

locked vs. unlocked mode 3-9
methods 3-6

properties 3-4

property values 3-4

release method 3-7

reset method 3-7

step method 3-7

tunable property 3-10
value-only input 3-5

T
tunable 3-10

v

value-only input 3-5

w

Web
demos 1-6

	toc
	Introduction
	Product Description
	Key Features

	System Setup
	Installation
	Installing the Communications System Toolbox Software
	Installing Online Documentation

	Required Products
	Expected Background
	Configure the Simulink Environment for Communications Models
	Using commstartup.m

	Product Demos
	Demos in the Help Browser
	Demos on the Web
	Demos on MATLAB Central

	Accessing the Block Libraries

	System Simulation
	Compute BER for a QAM System with AWGN and Phase Noise Using Sim
	Section Overview
	Opening the Model
	Overview of the Model
	Quadrature Amplitude Modulation
	Run a Simulation
	Display the Error Rate
	Set Block Parameters
	Display a Phase Noise Plot
	More Demos

	Compute BER for a QAM System with AWGN Using MATLAB
	Section Overview
	Modulate a Random Signal
	Solution of Problem

	Plot Signal Constellations
	Solution of Problem
	Examine the Plot

	Pulse Shaping Using a Raised Cosine Filter
	Solution of Problem

	Use a Convolutional Code
	Solution of Problem
	More About Delays

	System Objects
	Create System Objects
	Create a System Object
	Define a New System Object
	Change a System Object Property
	Run a System Object
	Display Available System Objects

	Set Up System Objects
	Create a New System Object
	Retrieve System Object Property Values
	Example

	Set System Object Property Values
	Set Properties for a New System Object
	Set Properties for an Existing System Object
	Use Value-Only Inputs

	Process Data using System Objects
	What are System Object Methods?
	The Step Method
	Common Methods
	Advantages of Using Methods

	What are System Object Locking and Property Tunability?
	Understand System Object Modes
	Change Properties While Running System Objects
	Change System Object Input Complexity or Dimensions

	Find Help and Demos for System Objects

	Index

